Resolva para y
y=-\frac{-x^{2}+x-6}{\left(x+2\right)^{2}}
x\neq -2
Resolva para x (complex solution)
\left\{\begin{matrix}x=\frac{-4y+\sqrt{48y-23}-1}{2\left(y-1\right)}\text{; }x=-\frac{4y+\sqrt{48y-23}+1}{2\left(y-1\right)}\text{, }&y\neq 1\\x=\frac{2}{5}=0,4\text{, }&y=1\end{matrix}\right,
Resolva para x
\left\{\begin{matrix}x=\frac{-4y+\sqrt{48y-23}-1}{2\left(y-1\right)}\text{; }x=-\frac{4y+\sqrt{48y-23}+1}{2\left(y-1\right)}\text{, }&y\neq 1\text{ and }y\geq \frac{23}{48}\\x=\frac{2}{5}=0,4\text{, }&y=1\end{matrix}\right,
Gráfico
Compartilhar
Copiado para a área de transferência
x^{2}y+4xy+x+4y-6=x^{2}
Adicionar x^{2} em ambos os lados. Qualquer valor mais zero dá o valor inicial.
x^{2}y+4xy+4y-6=x^{2}-x
Subtraia x de ambos os lados.
x^{2}y+4xy+4y=x^{2}-x+6
Adicionar 6 em ambos os lados.
\left(x^{2}+4x+4\right)y=x^{2}-x+6
Combine todos os termos que contenham y.
\frac{\left(x^{2}+4x+4\right)y}{x^{2}+4x+4}=\frac{x^{2}-x+6}{x^{2}+4x+4}
Divida ambos os lados por x^{2}+4x+4.
y=\frac{x^{2}-x+6}{x^{2}+4x+4}
Dividir por x^{2}+4x+4 anula a multiplicação por x^{2}+4x+4.
y=\frac{x^{2}-x+6}{\left(x+2\right)^{2}}
Divida x^{2}-x+6 por x^{2}+4x+4.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}