Avaliar
\left(x-5\right)^{2}
Fatorizar
\left(x-5\right)^{2}
Gráfico
Compartilhar
Copiado para a área de transferência
x^{2}-10x+5^{2}
Multiplique 2 e 5 para obter 10.
x^{2}-10x+25
Calcule 5 elevado a 2 e obtenha 25.
x^{2}-10x+25
Multiplique e combine termos semelhantes.
a+b=-10 ab=1\times 25=25
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx+25. Para encontrar a e b, criar um sistema a ser resolvido.
-1,-25 -5,-5
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é negativo, a e b são ambos negativos. Apresente todos os pares de números inteiros que devolvem o produto 25.
-1-25=-26 -5-5=-10
Calcule a soma de cada par.
a=-5 b=-5
A solução é o par que devolve a soma -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Reescreva x^{2}-10x+25 como \left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Fator out x no primeiro e -5 no segundo grupo.
\left(x-5\right)\left(x-5\right)
Decomponha o termo comum x-5 ao utilizar a propriedade distributiva.
\left(x-5\right)^{2}
Reescreva como um quadrado binomial.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}