Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=2 ab=1\left(-143\right)=-143
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx-143. Para encontrar a e b, criar um sistema a ser resolvido.
-1,143 -11,13
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -143.
-1+143=142 -11+13=2
Calcule a soma de cada par.
a=-11 b=13
A solução é o par que devolve a soma 2.
\left(x^{2}-11x\right)+\left(13x-143\right)
Reescreva x^{2}+2x-143 como \left(x^{2}-11x\right)+\left(13x-143\right).
x\left(x-11\right)+13\left(x-11\right)
Fator out x no primeiro e 13 no segundo grupo.
\left(x-11\right)\left(x+13\right)
Decomponha o termo comum x-11 ao utilizar a propriedade distributiva.
x^{2}+2x-143=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-143\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-2±\sqrt{4-4\left(-143\right)}}{2}
Calcule o quadrado de 2.
x=\frac{-2±\sqrt{4+572}}{2}
Multiplique -4 vezes -143.
x=\frac{-2±\sqrt{576}}{2}
Some 4 com 572.
x=\frac{-2±24}{2}
Calcule a raiz quadrada de 576.
x=\frac{22}{2}
Agora, resolva a equação x=\frac{-2±24}{2} quando ± for uma adição. Some -2 com 24.
x=11
Divida 22 por 2.
x=-\frac{26}{2}
Agora, resolva a equação x=\frac{-2±24}{2} quando ± for uma subtração. Subtraia 24 de -2.
x=-13
Divida -26 por 2.
x^{2}+2x-143=\left(x-11\right)\left(x-\left(-13\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua 11 por x_{1} e -13 por x_{2}.
x^{2}+2x-143=\left(x-11\right)\left(x+13\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.