Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=11 ab=1\times 30=30
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx+30. Para encontrar a e b, criar um sistema a ser resolvido.
1,30 2,15 3,10 5,6
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é positivo, a e b são ambos positivos. Apresente todos os pares de números inteiros que devolvem o produto 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calcule a soma de cada par.
a=5 b=6
A solução é o par que devolve a soma 11.
\left(x^{2}+5x\right)+\left(6x+30\right)
Reescreva x^{2}+11x+30 como \left(x^{2}+5x\right)+\left(6x+30\right).
x\left(x+5\right)+6\left(x+5\right)
Fator out x no primeiro e 6 no segundo grupo.
\left(x+5\right)\left(x+6\right)
Decomponha o termo comum x+5 ao utilizar a propriedade distributiva.
x^{2}+11x+30=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 30}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-11±\sqrt{121-4\times 30}}{2}
Calcule o quadrado de 11.
x=\frac{-11±\sqrt{121-120}}{2}
Multiplique -4 vezes 30.
x=\frac{-11±\sqrt{1}}{2}
Some 121 com -120.
x=\frac{-11±1}{2}
Calcule a raiz quadrada de 1.
x=-\frac{10}{2}
Agora, resolva a equação x=\frac{-11±1}{2} quando ± for uma adição. Some -11 com 1.
x=-5
Divida -10 por 2.
x=-\frac{12}{2}
Agora, resolva a equação x=\frac{-11±1}{2} quando ± for uma subtração. Subtraia 1 de -11.
x=-6
Divida -12 por 2.
x^{2}+11x+30=\left(x-\left(-5\right)\right)\left(x-\left(-6\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua -5 por x_{1} e -6 por x_{2}.
x^{2}+11x+30=\left(x+5\right)\left(x+6\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.