Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=-7 ab=1\times 10=10
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx+10. Para encontrar a e b, criar um sistema a ser resolvido.
-1,-10 -2,-5
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é negativo, a e b são ambos negativos. Apresente todos os pares de números inteiros que devolvem o produto 10.
-1-10=-11 -2-5=-7
Calcule a soma de cada par.
a=-5 b=-2
A solução é o par que devolve a soma -7.
\left(x^{2}-5x\right)+\left(-2x+10\right)
Reescreva x^{2}-7x+10 como \left(x^{2}-5x\right)+\left(-2x+10\right).
x\left(x-5\right)-2\left(x-5\right)
Fator out x no primeiro e -2 no segundo grupo.
\left(x-5\right)\left(x-2\right)
Decomponha o termo comum x-5 ao utilizar a propriedade distributiva.
x^{2}-7x+10=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10}}{2}
Calcule o quadrado de -7.
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2}
Multiplique -4 vezes 10.
x=\frac{-\left(-7\right)±\sqrt{9}}{2}
Some 49 com -40.
x=\frac{-\left(-7\right)±3}{2}
Calcule a raiz quadrada de 9.
x=\frac{7±3}{2}
O oposto de -7 é 7.
x=\frac{10}{2}
Agora, resolva a equação x=\frac{7±3}{2} quando ± for uma adição. Some 7 com 3.
x=5
Divida 10 por 2.
x=\frac{4}{2}
Agora, resolva a equação x=\frac{7±3}{2} quando ± for uma subtração. Subtraia 3 de 7.
x=2
Divida 4 por 2.
x^{2}-7x+10=\left(x-5\right)\left(x-2\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua 5 por x_{1} e 2 por x_{2}.