Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=3 ab=-4=-4
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como -x^{2}+ax+bx+4. Para encontrar a e b, criar um sistema a ser resolvido.
-1,4 -2,2
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -4.
-1+4=3 -2+2=0
Calcule a soma de cada par.
a=4 b=-1
A solução é o par que devolve a soma 3.
\left(-x^{2}+4x\right)+\left(-x+4\right)
Reescreva -x^{2}+3x+4 como \left(-x^{2}+4x\right)+\left(-x+4\right).
-x\left(x-4\right)-\left(x-4\right)
Fator out -x no primeiro e -1 no segundo grupo.
\left(x-4\right)\left(-x-1\right)
Decomponha o termo comum x-4 ao utilizar a propriedade distributiva.
-x^{2}+3x+4=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Calcule o quadrado de 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Multiplique -4 vezes -1.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Multiplique 4 vezes 4.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Some 9 com 16.
x=\frac{-3±5}{2\left(-1\right)}
Calcule a raiz quadrada de 25.
x=\frac{-3±5}{-2}
Multiplique 2 vezes -1.
x=\frac{2}{-2}
Agora, resolva a equação x=\frac{-3±5}{-2} quando ± for uma adição. Some -3 com 5.
x=-1
Divida 2 por -2.
x=-\frac{8}{-2}
Agora, resolva a equação x=\frac{-3±5}{-2} quando ± for uma subtração. Subtraia 5 de -3.
x=4
Divida -8 por -2.
-x^{2}+3x+4=-\left(x-\left(-1\right)\right)\left(x-4\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua -1 por x_{1} e 4 por x_{2}.
-x^{2}+3x+4=-\left(x+1\right)\left(x-4\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.