Resolva para f (complex solution)
\left\{\begin{matrix}f=-\frac{\sqrt{2}\left(4x^{2}-\sqrt[3]{x}+16\right)}{2r_{11}y}\text{, }&y\neq 0\text{ and }r_{11}\neq 0\\f\in \mathrm{C}\text{, }&4x^{2}-\sqrt[3]{x}+16=0\text{ and }\left(y=0\text{ or }r_{11}=0\right)\end{matrix}\right,
Resolva para r_11 (complex solution)
\left\{\begin{matrix}r_{11}=-\frac{\sqrt{2}\left(4x^{2}-\sqrt[3]{x}+16\right)}{2fy}\text{, }&y\neq 0\text{ and }f\neq 0\\r_{11}\in \mathrm{C}\text{, }&4x^{2}-\sqrt[3]{x}+16=0\text{ and }\left(y=0\text{ or }f=0\right)\end{matrix}\right,
Resolva para f
\left\{\begin{matrix}f=-\frac{\sqrt{2}\left(4x^{2}-\sqrt[3]{x}+16\right)}{2r_{11}y}\text{, }&y\neq 0\text{ and }r_{11}\neq 0\\f\in \mathrm{R}\text{, }&4x^{2}-\sqrt[3]{x}+16=0\text{ and }\left(y=0\text{ or }r_{11}=0\right)\end{matrix}\right,
Resolva para r_11
\left\{\begin{matrix}r_{11}=-\frac{\sqrt{2}\left(4x^{2}-\sqrt[3]{x}+16\right)}{2fy}\text{, }&y\neq 0\text{ and }f\neq 0\\r_{11}\in \mathrm{R}\text{, }&4x^{2}-\sqrt[3]{x}+16=0\text{ and }\left(y=0\text{ or }f=0\right)\end{matrix}\right,
Gráfico
Compartilhar
Copiado para a área de transferência
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalize o denominador de \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
O quadrado de \sqrt{2} é 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Utilize a propriedade distributiva para multiplicar \sqrt[3]{x}-4x^{2}-16 por \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiplique ambos os lados da equação por 2.
2r_{11}yf=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
A equação está no formato padrão.
\frac{2r_{11}yf}{2r_{11}y}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Divida ambos os lados por 2r_{11}y.
f=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Dividir por 2r_{11}y anula a multiplicação por 2r_{11}y.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalize o denominador de \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
O quadrado de \sqrt{2} é 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Utilize a propriedade distributiva para multiplicar \sqrt[3]{x}-4x^{2}-16 por \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiplique ambos os lados da equação por 2.
2fyr_{11}=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
A equação está no formato padrão.
\frac{2fyr_{11}}{2fy}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Divida ambos os lados por 2fy.
r_{11}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Dividir por 2fy anula a multiplicação por 2fy.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalize o denominador de \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
O quadrado de \sqrt{2} é 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Utilize a propriedade distributiva para multiplicar \sqrt[3]{x}-4x^{2}-16 por \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiplique ambos os lados da equação por 2.
2r_{11}yf=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
A equação está no formato padrão.
\frac{2r_{11}yf}{2r_{11}y}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Divida ambos os lados por 2r_{11}y.
f=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2r_{11}y}
Dividir por 2r_{11}y anula a multiplicação por 2r_{11}y.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalize o denominador de \frac{\sqrt[3]{x}-4x^{2}-16}{\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
fr_{11}y=\frac{\left(\sqrt[3]{x}-4x^{2}-16\right)\sqrt{2}}{2}
O quadrado de \sqrt{2} é 2.
fr_{11}y=\frac{\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}}{2}
Utilize a propriedade distributiva para multiplicar \sqrt[3]{x}-4x^{2}-16 por \sqrt{2}.
2fr_{11}y=\sqrt[3]{x}\sqrt{2}-4x^{2}\sqrt{2}-16\sqrt{2}
Multiplique ambos os lados da equação por 2.
2fyr_{11}=-4\sqrt{2}x^{2}+\sqrt{2}\sqrt[3]{x}-16\sqrt{2}
A equação está no formato padrão.
\frac{2fyr_{11}}{2fy}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Divida ambos os lados por 2fy.
r_{11}=\frac{\sqrt{2}\left(-4x^{2}+\sqrt[3]{x}-16\right)}{2fy}
Dividir por 2fy anula a multiplicação por 2fy.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}