Resolva para a
a=\frac{12}{41}\approx 0,292682927
Compartilhar
Copiado para a área de transferência
a+12=42a
Multiplique ambos os lados da equação por 3.
a+12-42a=0
Subtraia 42a de ambos os lados.
-41a+12=0
Combine a e -42a para obter -41a.
-41a=-12
Subtraia 12 de ambos os lados. Um valor subtraído de zero dá a respetiva negação.
a=\frac{-12}{-41}
Divida ambos os lados por -41.
a=\frac{12}{41}
A fração \frac{-12}{-41} pode ser simplificada para \frac{12}{41} ao remover o sinal negativo do numerador e do denominador.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}