Resolva para M (complex solution)
\left\{\begin{matrix}M=\frac{Fd^{2}}{gm}\text{, }&m\neq 0\text{ and }g\neq 0\text{ and }d\neq 0\\M\in \mathrm{C}\text{, }&\left(m=0\text{ or }g=0\right)\text{ and }F=0\text{ and }d\neq 0\end{matrix}\right,
Resolva para M
\left\{\begin{matrix}M=\frac{Fd^{2}}{gm}\text{, }&m\neq 0\text{ and }g\neq 0\text{ and }d\neq 0\\M\in \mathrm{R}\text{, }&\left(m=0\text{ or }g=0\right)\text{ and }F=0\text{ and }d\neq 0\end{matrix}\right,
Resolva para F
F=\frac{Mgm}{d^{2}}
d\neq 0
Compartilhar
Copiado para a área de transferência
Fd^{2}=gmM
Multiplique ambos os lados da equação por d^{2}.
gmM=Fd^{2}
Troque os lados para que todos os termos variáveis estejam no lado esquerdo.
\frac{gmM}{gm}=\frac{Fd^{2}}{gm}
Divida ambos os lados por gm.
M=\frac{Fd^{2}}{gm}
Dividir por gm anula a multiplicação por gm.
Fd^{2}=gmM
Multiplique ambos os lados da equação por d^{2}.
gmM=Fd^{2}
Troque os lados para que todos os termos variáveis estejam no lado esquerdo.
\frac{gmM}{gm}=\frac{Fd^{2}}{gm}
Divida ambos os lados por gm.
M=\frac{Fd^{2}}{gm}
Dividir por gm anula a multiplicação por gm.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}