Resolva para x
x=2
x=6
Gráfico
Compartilhar
Copiado para a área de transferência
8x-x^{2}-12=0
Subtraia 12 de ambos os lados.
-x^{2}+8x-12=0
Reformule o polinómio para o colocar no formato padrão. Coloque os termos pela ordem da potência mais elevada para a mais baixa.
a+b=8 ab=-\left(-12\right)=12
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como -x^{2}+ax+bx-12. Para encontrar a e b, criar um sistema a ser resolvido.
1,12 2,6 3,4
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é positivo, a e b são ambos positivos. Apresente todos os pares de números inteiros que devolvem o produto 12.
1+12=13 2+6=8 3+4=7
Calcule a soma de cada par.
a=6 b=2
A solução é o par que devolve a soma 8.
\left(-x^{2}+6x\right)+\left(2x-12\right)
Reescreva -x^{2}+8x-12 como \left(-x^{2}+6x\right)+\left(2x-12\right).
-x\left(x-6\right)+2\left(x-6\right)
Fator out -x no primeiro e 2 no segundo grupo.
\left(x-6\right)\left(-x+2\right)
Decomponha o termo comum x-6 ao utilizar a propriedade distributiva.
x=6 x=2
Para encontrar soluções de equação, resolva x-6=0 e -x+2=0.
-x^{2}+8x=12
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
-x^{2}+8x-12=12-12
Subtraia 12 de ambos os lados da equação.
-x^{2}+8x-12=0
Subtrair 12 do próprio valor devolve o resultado 0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua -1 por a, 8 por b e -12 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Calcule o quadrado de 8.
x=\frac{-8±\sqrt{64+4\left(-12\right)}}{2\left(-1\right)}
Multiplique -4 vezes -1.
x=\frac{-8±\sqrt{64-48}}{2\left(-1\right)}
Multiplique 4 vezes -12.
x=\frac{-8±\sqrt{16}}{2\left(-1\right)}
Some 64 com -48.
x=\frac{-8±4}{2\left(-1\right)}
Calcule a raiz quadrada de 16.
x=\frac{-8±4}{-2}
Multiplique 2 vezes -1.
x=-\frac{4}{-2}
Agora, resolva a equação x=\frac{-8±4}{-2} quando ± for uma adição. Some -8 com 4.
x=2
Divida -4 por -2.
x=-\frac{12}{-2}
Agora, resolva a equação x=\frac{-8±4}{-2} quando ± for uma subtração. Subtraia 4 de -8.
x=6
Divida -12 por -2.
x=2 x=6
A equação está resolvida.
-x^{2}+8x=12
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
\frac{-x^{2}+8x}{-1}=\frac{12}{-1}
Divida ambos os lados por -1.
x^{2}+\frac{8}{-1}x=\frac{12}{-1}
Dividir por -1 anula a multiplicação por -1.
x^{2}-8x=\frac{12}{-1}
Divida 8 por -1.
x^{2}-8x=-12
Divida 12 por -1.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
Divida -8, o coeficiente do termo x, 2 para obter -4. Em seguida, adicione o quadrado de -4 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}-8x+16=-12+16
Calcule o quadrado de -4.
x^{2}-8x+16=4
Some -12 com 16.
\left(x-4\right)^{2}=4
Fatorize x^{2}-8x+16. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
Calcule a raiz quadrada de ambos os lados da equação.
x-4=2 x-4=-2
Simplifique.
x=6 x=2
Some 4 a ambos os lados da equação.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}