Pular para o conteúdo principal
Resolva para x (complex solution)
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

x^{2}=-\frac{48}{7}
Divida ambos os lados por 7.
x=\frac{4\sqrt{21}i}{7} x=-\frac{4\sqrt{21}i}{7}
A equação está resolvida.
x^{2}=-\frac{48}{7}
Divida ambos os lados por 7.
x^{2}+\frac{48}{7}=0
Adicionar \frac{48}{7} em ambos os lados.
x=\frac{0±\sqrt{0^{2}-4\times \frac{48}{7}}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 0 por b e \frac{48}{7} por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{48}{7}}}{2}
Calcule o quadrado de 0.
x=\frac{0±\sqrt{-\frac{192}{7}}}{2}
Multiplique -4 vezes \frac{48}{7}.
x=\frac{0±\frac{8\sqrt{21}i}{7}}{2}
Calcule a raiz quadrada de -\frac{192}{7}.
x=\frac{4\sqrt{21}i}{7}
Agora, resolva a equação x=\frac{0±\frac{8\sqrt{21}i}{7}}{2} quando ± for uma adição.
x=-\frac{4\sqrt{21}i}{7}
Agora, resolva a equação x=\frac{0±\frac{8\sqrt{21}i}{7}}{2} quando ± for uma subtração.
x=\frac{4\sqrt{21}i}{7} x=-\frac{4\sqrt{21}i}{7}
A equação está resolvida.