Resolver o valor x
x\geq -2
Gráfico
Compartilhar
Copiado para a área de transferência
6x-1\geq 2x-10+1
Utilize a propriedade distributiva para multiplicar 2 por x-5.
6x-1\geq 2x-9
Some -10 e 1 para obter -9.
6x-1-2x\geq -9
Subtraia 2x de ambos os lados.
4x-1\geq -9
Combine 6x e -2x para obter 4x.
4x\geq -9+1
Adicionar 1 em ambos os lados.
4x\geq -8
Some -9 e 1 para obter -8.
x\geq \frac{-8}{4}
Divida ambos os lados por 4. Uma vez que 4 é positivo, a direção da desigualdade não é alterada.
x\geq -2
Dividir -8 por 4 para obter -2.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}