Pular para o conteúdo principal
Resolver o valor x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

3-x^{2}+4x\geq 0
Subtraia 3 de 6 para obter 3.
-3+x^{2}-4x\leq 0
Multiplique a desigualdade por -1 para transformar o coeficiente da potência mais elevada em 3-x^{2}+4x positivo. Uma vez que -1 é negativo, a direção da desigualdade é alterada.
-3+x^{2}-4x=0
Para resolver a desigualdade, fatorize o lado esquerdo. O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-3\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitua 1 por a, -4 por b e -3 por c na fórmula quadrática.
x=\frac{4±2\sqrt{7}}{2}
Efetue os cálculos.
x=\sqrt{7}+2 x=2-\sqrt{7}
Resolva a equação x=\frac{4±2\sqrt{7}}{2} quando ± é mais e quando ± é menos.
\left(x-\left(\sqrt{7}+2\right)\right)\left(x-\left(2-\sqrt{7}\right)\right)\leq 0
Rescreva a desigualdade ao utilizar as soluções obtidas.
x-\left(\sqrt{7}+2\right)\geq 0 x-\left(2-\sqrt{7}\right)\leq 0
Para que o produto seja ≤0, um dos valores x-\left(\sqrt{7}+2\right) e x-\left(2-\sqrt{7}\right) tem de ser ≥0 e o outro tem de ser ≤0. Considere o caso quando x-\left(\sqrt{7}+2\right)\geq 0 e x-\left(2-\sqrt{7}\right)\leq 0.
x\in \emptyset
Isto é falso para qualquer valor x.
x-\left(2-\sqrt{7}\right)\geq 0 x-\left(\sqrt{7}+2\right)\leq 0
Considere o caso quando x-\left(\sqrt{7}+2\right)\leq 0 e x-\left(2-\sqrt{7}\right)\geq 0.
x\in \begin{bmatrix}2-\sqrt{7},\sqrt{7}+2\end{bmatrix}
A solução que satisfaz ambas as desigualdades é x\in \left[2-\sqrt{7},\sqrt{7}+2\right].
x\in \begin{bmatrix}2-\sqrt{7},\sqrt{7}+2\end{bmatrix}
A solução final é a união das soluções obtidas.