Pular para o conteúdo principal
Resolva para x
Tick mark Image
Resolva para x (complex solution)
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

592\times 3^{2x}=74
Utilize as regras dos expoentes e logaritmos para resolver a equação.
3^{2x}=\frac{1}{8}
Divida ambos os lados por 592.
\log(3^{2x})=\log(\frac{1}{8})
Tire o logaritmo de ambos os lados da equação.
2x\log(3)=\log(\frac{1}{8})
O logaritmo de um número elevado a uma potência é a potência vezes o logaritmo do número.
2x=\frac{\log(\frac{1}{8})}{\log(3)}
Divida ambos os lados por \log(3).
2x=\log_{3}\left(\frac{1}{8}\right)
Pela fórmula de mudança de base \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{3\log_{3}\left(2\right)}{2}
Divida ambos os lados por 2.