Resolva para x
x=-\frac{131}{540}\approx -0,242592593
Gráfico
Compartilhar
Copiado para a área de transferência
54x+14=\frac{9}{10}
Reduza a fração \frac{27}{30} para os termos mais baixos ao retirar e anular 3.
54x=\frac{9}{10}-14
Subtraia 14 de ambos os lados.
54x=\frac{9}{10}-\frac{140}{10}
Converta 14 na fração \frac{140}{10}.
54x=\frac{9-140}{10}
Uma vez que \frac{9}{10} e \frac{140}{10} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
54x=-\frac{131}{10}
Subtraia 140 de 9 para obter -131.
x=\frac{-\frac{131}{10}}{54}
Divida ambos os lados por 54.
x=\frac{-131}{10\times 54}
Expresse \frac{-\frac{131}{10}}{54} como uma fração única.
x=\frac{-131}{540}
Multiplique 10 e 54 para obter 540.
x=-\frac{131}{540}
A fração \frac{-131}{540} pode ser reescrita como -\frac{131}{540} ao remover o sinal negativo.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}