Pular para o conteúdo principal
Resolva para x
Tick mark Image
Resolva para x (complex solution)
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

123^{x}=4845
Troque os lados para que todos os termos variáveis estejam no lado esquerdo.
\log(123^{x})=\log(4845)
Tire o logaritmo de ambos os lados da equação.
x\log(123)=\log(4845)
O logaritmo de um número elevado a uma potência é a potência vezes o logaritmo do número.
x=\frac{\log(4845)}{\log(123)}
Divida ambos os lados por \log(123).
x=\log_{123}\left(4845\right)
Pela fórmula de mudança de base \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).