Pular para o conteúdo principal
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

3x^{2}=342
Multiplique x e x para obter x^{2}.
x^{2}=\frac{342}{3}
Divida ambos os lados por 3.
x^{2}=114
Dividir 342 por 3 para obter 114.
x=\sqrt{114} x=-\sqrt{114}
Calcule a raiz quadrada de ambos os lados da equação.
3x^{2}=342
Multiplique x e x para obter x^{2}.
3x^{2}-342=0
Subtraia 342 de ambos os lados.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-342\right)}}{2\times 3}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 3 por a, 0 por b e -342 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-342\right)}}{2\times 3}
Calcule o quadrado de 0.
x=\frac{0±\sqrt{-12\left(-342\right)}}{2\times 3}
Multiplique -4 vezes 3.
x=\frac{0±\sqrt{4104}}{2\times 3}
Multiplique -12 vezes -342.
x=\frac{0±6\sqrt{114}}{2\times 3}
Calcule a raiz quadrada de 4104.
x=\frac{0±6\sqrt{114}}{6}
Multiplique 2 vezes 3.
x=\sqrt{114}
Agora, resolva a equação x=\frac{0±6\sqrt{114}}{6} quando ± for uma adição.
x=-\sqrt{114}
Agora, resolva a equação x=\frac{0±6\sqrt{114}}{6} quando ± for uma subtração.
x=\sqrt{114} x=-\sqrt{114}
A equação está resolvida.