Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=5 ab=3\left(-2\right)=-6
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como 3y^{2}+ay+by-2. Para encontrar a e b, criar um sistema a ser resolvido.
-1,6 -2,3
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -6.
-1+6=5 -2+3=1
Calcule a soma de cada par.
a=-1 b=6
A solução é o par que devolve a soma 5.
\left(3y^{2}-y\right)+\left(6y-2\right)
Reescreva 3y^{2}+5y-2 como \left(3y^{2}-y\right)+\left(6y-2\right).
y\left(3y-1\right)+2\left(3y-1\right)
Fator out y no primeiro e 2 no segundo grupo.
\left(3y-1\right)\left(y+2\right)
Decomponha o termo comum 3y-1 ao utilizar a propriedade distributiva.
3y^{2}+5y-2=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
y=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Calcule o quadrado de 5.
y=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
Multiplique -4 vezes 3.
y=\frac{-5±\sqrt{25+24}}{2\times 3}
Multiplique -12 vezes -2.
y=\frac{-5±\sqrt{49}}{2\times 3}
Some 25 com 24.
y=\frac{-5±7}{2\times 3}
Calcule a raiz quadrada de 49.
y=\frac{-5±7}{6}
Multiplique 2 vezes 3.
y=\frac{2}{6}
Agora, resolva a equação y=\frac{-5±7}{6} quando ± for uma adição. Some -5 com 7.
y=\frac{1}{3}
Reduza a fração \frac{2}{6} para os termos mais baixos ao retirar e anular 2.
y=-\frac{12}{6}
Agora, resolva a equação y=\frac{-5±7}{6} quando ± for uma subtração. Subtraia 7 de -5.
y=-2
Divida -12 por 6.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y-\left(-2\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua \frac{1}{3} por x_{1} e -2 por x_{2}.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y+2\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.
3y^{2}+5y-2=3\times \frac{3y-1}{3}\left(y+2\right)
Subtraia \frac{1}{3} de y ao localizar um denominador comum e ao subtrair os numeradores. Em seguida, se possível, reduza a fração para os termos mais baixos.
3y^{2}+5y-2=\left(3y-1\right)\left(y+2\right)
Anule o maior fator comum 3 em 3 e 3.