Fatorizar
\left(2x-1\right)\left(x+2\right)\left(x^{2}-3\right)
Avaliar
\left(2x-1\right)\left(x+2\right)\left(x^{2}-3\right)
Gráfico
Compartilhar
Copiado para a área de transferência
2x^{4}+3x^{3}-8x^{2}-9x+6=0
Para fatorizar o resultado, resolva a equação igual a 0.
±3,±6,±\frac{3}{2},±1,±2,±\frac{1}{2}
De acordo com o Teorema das Raízes Racionais, todas as raízes racionais de um polinómio estão no formato \frac{p}{q}, em que p divide o termo constante 6 e q divide o coeficiente inicial 2. Indique todos os candidatos \frac{p}{q}.
x=-2
Encontre uma dessas raízes ao experimentar todos os valores inteiros. Comece pelo menor por valor absoluto. Se não encontrar nenhuma raiz de número inteiro, experimente frações.
2x^{3}-x^{2}-6x+3=0
Por teorema do fator, x-k é um fator do polinomial para cada raiz k. Dividir 2x^{4}+3x^{3}-8x^{2}-9x+6 por x+2 para obter 2x^{3}-x^{2}-6x+3. Para fatorizar o resultado, resolva a equação igual a 0.
±\frac{3}{2},±3,±\frac{1}{2},±1
De acordo com o Teorema das Raízes Racionais, todas as raízes racionais de um polinómio estão no formato \frac{p}{q}, em que p divide o termo constante 3 e q divide o coeficiente inicial 2. Indique todos os candidatos \frac{p}{q}.
x=\frac{1}{2}
Encontre uma dessas raízes ao experimentar todos os valores inteiros. Comece pelo menor por valor absoluto. Se não encontrar nenhuma raiz de número inteiro, experimente frações.
x^{2}-3=0
Por teorema do fator, x-k é um fator do polinomial para cada raiz k. Dividir 2x^{3}-x^{2}-6x+3 por 2\left(x-\frac{1}{2}\right)=2x-1 para obter x^{2}-3. Para fatorizar o resultado, resolva a equação igual a 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-3\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitua 1 por a, 0 por b e -3 por c na fórmula quadrática.
x=\frac{0±2\sqrt{3}}{2}
Efetue os cálculos.
x=-\sqrt{3} x=\sqrt{3}
Resolva a equação x^{2}-3=0 quando ± é mais e quando ± é menos.
\left(2x-1\right)\left(x+2\right)\left(x^{2}-3\right)
Reescreva a expressão fatorizada ao utilizar as raízes obtidas. O polinómio x^{2}-3 não é fatorizado, pois não tem raízes racionais.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}