Resolva para m
m=2n-1
Resolva para n
n=\frac{m+1}{2}
Compartilhar
Copiado para a área de transferência
5-m=6-2n
Subtraia 2n de ambos os lados.
-m=6-2n-5
Subtraia 5 de ambos os lados.
-m=1-2n
Subtraia 5 de 6 para obter 1.
\frac{-m}{-1}=\frac{1-2n}{-1}
Divida ambos os lados por -1.
m=\frac{1-2n}{-1}
Dividir por -1 anula a multiplicação por -1.
m=2n-1
Divida 1-2n por -1.
2n-m=6-5
Subtraia 5 de ambos os lados.
2n-m=1
Subtraia 5 de 6 para obter 1.
2n=1+m
Adicionar m em ambos os lados.
2n=m+1
A equação está no formato padrão.
\frac{2n}{2}=\frac{m+1}{2}
Divida ambos os lados por 2.
n=\frac{m+1}{2}
Dividir por 2 anula a multiplicação por 2.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}