Resolva para a (complex solution)
\left\{\begin{matrix}a=\frac{2bx}{y+b}\text{, }&b\neq -y\\a\in \mathrm{C}\text{, }&\left(b=0\text{ and }y=0\right)\text{ or }\left(x=0\text{ and }b=-y\right)\end{matrix}\right,
Resolva para b (complex solution)
\left\{\begin{matrix}b=\frac{ay}{2x-a}\text{, }&x\neq \frac{a}{2}\\b\in \mathrm{C}\text{, }&\left(a=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=\frac{a}{2}\right)\end{matrix}\right,
Resolva para a
\left\{\begin{matrix}a=\frac{2bx}{y+b}\text{, }&b\neq -y\\a\in \mathrm{R}\text{, }&\left(b=0\text{ and }y=0\right)\text{ or }\left(x=0\text{ and }b=-y\right)\end{matrix}\right,
Resolva para b
\left\{\begin{matrix}b=\frac{ay}{2x-a}\text{, }&x\neq \frac{a}{2}\\b\in \mathrm{R}\text{, }&\left(a=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=\frac{a}{2}\right)\end{matrix}\right,
Gráfico
Compartilhar
Copiado para a área de transferência
2bx-ay-ab=0
Subtraia ab de ambos os lados.
-ay-ab=-2bx
Subtraia 2bx de ambos os lados. Um valor subtraído de zero dá a respetiva negação.
\left(-y-b\right)a=-2bx
Combine todos os termos que contenham a.
\frac{\left(-y-b\right)a}{-y-b}=-\frac{2bx}{-y-b}
Divida ambos os lados por -y-b.
a=-\frac{2bx}{-y-b}
Dividir por -y-b anula a multiplicação por -y-b.
a=\frac{2bx}{y+b}
Divida -2bx por -y-b.
2bx-ay-ab=0
Subtraia ab de ambos os lados.
2bx-ab=ay
Adicionar ay em ambos os lados. Qualquer valor mais zero dá o valor inicial.
\left(2x-a\right)b=ay
Combine todos os termos que contenham b.
\frac{\left(2x-a\right)b}{2x-a}=\frac{ay}{2x-a}
Divida ambos os lados por 2x-a.
b=\frac{ay}{2x-a}
Dividir por 2x-a anula a multiplicação por 2x-a.
2bx-ay-ab=0
Subtraia ab de ambos os lados.
-ay-ab=-2bx
Subtraia 2bx de ambos os lados. Um valor subtraído de zero dá a respetiva negação.
\left(-y-b\right)a=-2bx
Combine todos os termos que contenham a.
\frac{\left(-y-b\right)a}{-y-b}=-\frac{2bx}{-y-b}
Divida ambos os lados por -y-b.
a=-\frac{2bx}{-y-b}
Dividir por -y-b anula a multiplicação por -y-b.
a=\frac{2bx}{y+b}
Divida -2bx por -y-b.
2bx-ay-ab=0
Subtraia ab de ambos os lados.
2bx-ab=ay
Adicionar ay em ambos os lados. Qualquer valor mais zero dá o valor inicial.
\left(2x-a\right)b=ay
Combine todos os termos que contenham b.
\frac{\left(2x-a\right)b}{2x-a}=\frac{ay}{2x-a}
Divida ambos os lados por 2x-a.
b=\frac{ay}{2x-a}
Dividir por 2x-a anula a multiplicação por 2x-a.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}