Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=7 ab=2\left(-15\right)=-30
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como 2x^{2}+ax+bx-15. Para encontrar a e b, criar um sistema a ser resolvido.
-1,30 -2,15 -3,10 -5,6
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calcule a soma de cada par.
a=-3 b=10
A solução é o par que devolve a soma 7.
\left(2x^{2}-3x\right)+\left(10x-15\right)
Reescreva 2x^{2}+7x-15 como \left(2x^{2}-3x\right)+\left(10x-15\right).
x\left(2x-3\right)+5\left(2x-3\right)
Fator out x no primeiro e 5 no segundo grupo.
\left(2x-3\right)\left(x+5\right)
Decomponha o termo comum 2x-3 ao utilizar a propriedade distributiva.
2x^{2}+7x-15=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-15\right)}}{2\times 2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-7±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
Calcule o quadrado de 7.
x=\frac{-7±\sqrt{49-8\left(-15\right)}}{2\times 2}
Multiplique -4 vezes 2.
x=\frac{-7±\sqrt{49+120}}{2\times 2}
Multiplique -8 vezes -15.
x=\frac{-7±\sqrt{169}}{2\times 2}
Some 49 com 120.
x=\frac{-7±13}{2\times 2}
Calcule a raiz quadrada de 169.
x=\frac{-7±13}{4}
Multiplique 2 vezes 2.
x=\frac{6}{4}
Agora, resolva a equação x=\frac{-7±13}{4} quando ± for uma adição. Some -7 com 13.
x=\frac{3}{2}
Reduza a fração \frac{6}{4} para os termos mais baixos ao retirar e anular 2.
x=-\frac{20}{4}
Agora, resolva a equação x=\frac{-7±13}{4} quando ± for uma subtração. Subtraia 13 de -7.
x=-5
Divida -20 por 4.
2x^{2}+7x-15=2\left(x-\frac{3}{2}\right)\left(x-\left(-5\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua \frac{3}{2} por x_{1} e -5 por x_{2}.
2x^{2}+7x-15=2\left(x-\frac{3}{2}\right)\left(x+5\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.
2x^{2}+7x-15=2\times \frac{2x-3}{2}\left(x+5\right)
Subtraia \frac{3}{2} de x ao localizar um denominador comum e ao subtrair os numeradores. Em seguida, se possível, reduza a fração para os termos mais baixos.
2x^{2}+7x-15=\left(2x-3\right)\left(x+5\right)
Anule o maior fator comum 2 em 2 e 2.