Resolva para v (complex solution)
v=-\frac{\sqrt[4]{3x-1}+1}{x}
x\neq 0
Resolva para v
v=-\frac{\sqrt[4]{3x-1}+1}{x}
x\geq \frac{1}{3}
Gráfico
Compartilhar
Copiado para a área de transferência
-vx=\sqrt[4]{3x-1}+1
Reordene os termos.
\left(-x\right)v=\sqrt[4]{3x-1}+1
A equação está no formato padrão.
\frac{\left(-x\right)v}{-x}=\frac{\sqrt[4]{3x-1}+1}{-x}
Divida ambos os lados por -x.
v=\frac{\sqrt[4]{3x-1}+1}{-x}
Dividir por -x anula a multiplicação por -x.
v=-\frac{\sqrt[4]{3x-1}+1}{x}
Divida \sqrt[4]{3x-1}+1 por -x.
-vx=\sqrt[4]{3x-1}+1
Reordene os termos.
\left(-x\right)v=\sqrt[4]{3x-1}+1
A equação está no formato padrão.
\frac{\left(-x\right)v}{-x}=\frac{\sqrt[4]{3x-1}+1}{-x}
Divida ambos os lados por -x.
v=\frac{\sqrt[4]{3x-1}+1}{-x}
Dividir por -x anula a multiplicação por -x.
v=-\frac{\sqrt[4]{3x-1}+1}{x}
Divida \sqrt[4]{3x-1}+1 por -x.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}