Resolva para x
x=-9
x=0
Gráfico
Compartilhar
Copiado para a área de transferência
-270x-30x^{2}=0
Subtraia 30x^{2} de ambos os lados.
x\left(-270-30x\right)=0
Decomponha x.
x=0 x=-9
Para encontrar soluções de equação, resolva x=0 e -270-30x=0.
-270x-30x^{2}=0
Subtraia 30x^{2} de ambos os lados.
-30x^{2}-270x=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}}}{2\left(-30\right)}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua -30 por a, -270 por b e 0 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-270\right)±270}{2\left(-30\right)}
Calcule a raiz quadrada de \left(-270\right)^{2}.
x=\frac{270±270}{2\left(-30\right)}
O oposto de -270 é 270.
x=\frac{270±270}{-60}
Multiplique 2 vezes -30.
x=\frac{540}{-60}
Agora, resolva a equação x=\frac{270±270}{-60} quando ± for uma adição. Some 270 com 270.
x=-9
Divida 540 por -60.
x=\frac{0}{-60}
Agora, resolva a equação x=\frac{270±270}{-60} quando ± for uma subtração. Subtraia 270 de 270.
x=0
Divida 0 por -60.
x=-9 x=0
A equação está resolvida.
-270x-30x^{2}=0
Subtraia 30x^{2} de ambos os lados.
-30x^{2}-270x=0
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
\frac{-30x^{2}-270x}{-30}=\frac{0}{-30}
Divida ambos os lados por -30.
x^{2}+\left(-\frac{270}{-30}\right)x=\frac{0}{-30}
Dividir por -30 anula a multiplicação por -30.
x^{2}+9x=\frac{0}{-30}
Divida -270 por -30.
x^{2}+9x=0
Divida 0 por -30.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=\left(\frac{9}{2}\right)^{2}
Divida 9, o coeficiente do termo x, 2 para obter \frac{9}{2}. Em seguida, adicione o quadrado de \frac{9}{2} para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}+9x+\frac{81}{4}=\frac{81}{4}
Calcule o quadrado de \frac{9}{2}, ao elevar ao quadrado o numerador e o denominador da fração.
\left(x+\frac{9}{2}\right)^{2}=\frac{81}{4}
Fatorize x^{2}+9x+\frac{81}{4}. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Calcule a raiz quadrada de ambos os lados da equação.
x+\frac{9}{2}=\frac{9}{2} x+\frac{9}{2}=-\frac{9}{2}
Simplifique.
x=0 x=-9
Subtraia \frac{9}{2} de ambos os lados da equação.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}