Pular para o conteúdo principal
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\left(x+10\right)^{2}=25
Multiplique x+10 e x+10 para obter \left(x+10\right)^{2}.
x^{2}+20x+100=25
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+10\right)^{2}.
x^{2}+20x+100-25=0
Subtraia 25 de ambos os lados.
x^{2}+20x+75=0
Subtraia 25 de 100 para obter 75.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 20 por b e 75 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
Calcule o quadrado de 20.
x=\frac{-20±\sqrt{400-300}}{2}
Multiplique -4 vezes 75.
x=\frac{-20±\sqrt{100}}{2}
Some 400 com -300.
x=\frac{-20±10}{2}
Calcule a raiz quadrada de 100.
x=-\frac{10}{2}
Agora, resolva a equação x=\frac{-20±10}{2} quando ± for uma adição. Some -20 com 10.
x=-5
Divida -10 por 2.
x=-\frac{30}{2}
Agora, resolva a equação x=\frac{-20±10}{2} quando ± for uma subtração. Subtraia 10 de -20.
x=-15
Divida -30 por 2.
x=-5 x=-15
A equação está resolvida.
\left(x+10\right)^{2}=25
Multiplique x+10 e x+10 para obter \left(x+10\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
Calcule a raiz quadrada de ambos os lados da equação.
x+10=5 x+10=-5
Simplifique.
x=-5 x=-15
Subtraia 10 de ambos os lados da equação.