Resolva para b
b=\frac{ia}{3}+\left(1-3i\right)
Resolva para a
a=9+3i-3ib
Compartilhar
Copiado para a área de transferência
a-2+3ib+i=7+4i
Utilize a propriedade distributiva para multiplicar 3b+1 por i.
-2+3ib+i=7+4i-a
Subtraia a de ambos os lados.
3ib+i=7+4i-a+2
Adicionar 2 em ambos os lados.
3ib+i=-a+9+4i
Efetue as adições em 7+4i+2.
3ib=-a+9+4i-i
Subtraia i de ambos os lados.
3ib=-a+9+3i
Efetue as adições em 9+4i-i.
3ib=9+3i-a
A equação está no formato padrão.
\frac{3ib}{3i}=\frac{9+3i-a}{3i}
Divida ambos os lados por 3i.
b=\frac{9+3i-a}{3i}
Dividir por 3i anula a multiplicação por 3i.
b=\frac{ia}{3}+\left(1-3i\right)
Divida -a+\left(9+3i\right) por 3i.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}