Resolva para a (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&c=0\end{matrix}\right,
Resolva para c (complex solution)
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&a=0\end{matrix}\right,
Resolva para a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&c=0\end{matrix}\right,
Resolva para c
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&a=0\end{matrix}\right,
Compartilhar
Copiado para a área de transferência
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}-a^{2}=-2ac+c^{2}
Subtraia a^{2} de ambos os lados.
2ac+c^{2}=-2ac+c^{2}
Combine a^{2} e -a^{2} para obter 0.
2ac+c^{2}+2ac=c^{2}
Adicionar 2ac em ambos os lados.
4ac+c^{2}=c^{2}
Combine 2ac e 2ac para obter 4ac.
4ac=c^{2}-c^{2}
Subtraia c^{2} de ambos os lados.
4ac=0
Combine c^{2} e -c^{2} para obter 0.
4ca=0
A equação está no formato padrão.
a=0
Divida 0 por 4c.
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Utilize o teorema binomial \left(p+q\right)^{2}=p^{2}+2pq+q^{2} para expandir \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Utilize o teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}+2ac=a^{2}+c^{2}
Adicionar 2ac em ambos os lados.
a^{2}+4ac+c^{2}=a^{2}+c^{2}
Combine 2ac e 2ac para obter 4ac.
a^{2}+4ac+c^{2}-c^{2}=a^{2}
Subtraia c^{2} de ambos os lados.
a^{2}+4ac=a^{2}
Combine c^{2} e -c^{2} para obter 0.
4ac=a^{2}-a^{2}
Subtraia a^{2} de ambos os lados.
4ac=0
Combine a^{2} e -a^{2} para obter 0.
c=0
Divida 0 por 4a.
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}-a^{2}=-2ac+c^{2}
Subtraia a^{2} de ambos os lados.
2ac+c^{2}=-2ac+c^{2}
Combine a^{2} e -a^{2} para obter 0.
2ac+c^{2}+2ac=c^{2}
Adicionar 2ac em ambos os lados.
4ac+c^{2}=c^{2}
Combine 2ac e 2ac para obter 4ac.
4ac=c^{2}-c^{2}
Subtraia c^{2} de ambos os lados.
4ac=0
Combine c^{2} e -c^{2} para obter 0.
4ca=0
A equação está no formato padrão.
a=0
Divida 0 por 4c.
a^{2}+2ac+c^{2}=\left(a-c\right)^{2}
Utilize o teorema binomial \left(p+q\right)^{2}=p^{2}+2pq+q^{2} para expandir \left(a+c\right)^{2}.
a^{2}+2ac+c^{2}=a^{2}-2ac+c^{2}
Utilize o teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(a-c\right)^{2}.
a^{2}+2ac+c^{2}+2ac=a^{2}+c^{2}
Adicionar 2ac em ambos os lados.
a^{2}+4ac+c^{2}=a^{2}+c^{2}
Combine 2ac e 2ac para obter 4ac.
a^{2}+4ac+c^{2}-c^{2}=a^{2}
Subtraia c^{2} de ambos os lados.
a^{2}+4ac=a^{2}
Combine c^{2} e -c^{2} para obter 0.
4ac=a^{2}-a^{2}
Subtraia a^{2} de ambos os lados.
4ac=0
Combine a^{2} e -a^{2} para obter 0.
c=0
Divida 0 por 4a.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}