( 6 x - 4 y = 4
Resolva para x
x=\frac{2\left(y+1\right)}{3}
Resolva para y
y=\frac{3x}{2}-1
Gráfico
Compartilhar
Copiado para a área de transferência
6x=4+4y
Adicionar 4y em ambos os lados.
6x=4y+4
A equação está no formato padrão.
\frac{6x}{6}=\frac{4y+4}{6}
Divida ambos os lados por 6.
x=\frac{4y+4}{6}
Dividir por 6 anula a multiplicação por 6.
x=\frac{2y+2}{3}
Divida 4+4y por 6.
-4y=4-6x
Subtraia 6x de ambos os lados.
\frac{-4y}{-4}=\frac{4-6x}{-4}
Divida ambos os lados por -4.
y=\frac{4-6x}{-4}
Dividir por -4 anula a multiplicação por -4.
y=\frac{3x}{2}-1
Divida 4-6x por -4.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}