Pular para o conteúdo principal
Avaliar
Tick mark Image
Expandir
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

25\left(\sqrt{6}\right)^{2}-10\sqrt{6}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(5\sqrt{6}-\sqrt{5}\right)^{2}.
25\times 6-10\sqrt{6}\sqrt{5}+\left(\sqrt{5}\right)^{2}
O quadrado de \sqrt{6} é 6.
150-10\sqrt{6}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Multiplique 25 e 6 para obter 150.
150-10\sqrt{30}+\left(\sqrt{5}\right)^{2}
Para multiplicar \sqrt{6} e \sqrt{5}, multiplique os números sob a raiz quadrada.
150-10\sqrt{30}+5
O quadrado de \sqrt{5} é 5.
155-10\sqrt{30}
Some 150 e 5 para obter 155.
25\left(\sqrt{6}\right)^{2}-10\sqrt{6}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(5\sqrt{6}-\sqrt{5}\right)^{2}.
25\times 6-10\sqrt{6}\sqrt{5}+\left(\sqrt{5}\right)^{2}
O quadrado de \sqrt{6} é 6.
150-10\sqrt{6}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Multiplique 25 e 6 para obter 150.
150-10\sqrt{30}+\left(\sqrt{5}\right)^{2}
Para multiplicar \sqrt{6} e \sqrt{5}, multiplique os números sob a raiz quadrada.
150-10\sqrt{30}+5
O quadrado de \sqrt{5} é 5.
155-10\sqrt{30}
Some 150 e 5 para obter 155.