Pular para o conteúdo principal
Avaliar
Tick mark Image
Expandir
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

1-a+\frac{1}{4}a^{2}+8\left(a-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Utilize o teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(1-\frac{1}{2}a\right)^{2}.
1-a+\frac{1}{4}a^{2}+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Utilize o teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(a-\frac{1}{4}\right)^{2}.
1-a+\frac{1}{4}a^{2}+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Utilize a propriedade distributiva para multiplicar 8 por a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-a+\frac{33}{4}a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Combine \frac{1}{4}a^{2} e 8a^{2} para obter \frac{33}{4}a^{2}.
1-5a+\frac{33}{4}a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Combine -a e -4a para obter -5a.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Some 1 e \frac{1}{2} para obter \frac{3}{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Considere \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calcule o quadrado de 1.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Expanda \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\frac{9}{4}a^{2}-1+5a
Calcule \frac{3}{2} elevado a 2 e obtenha \frac{9}{4}.
\frac{3}{2}-5a+\frac{21}{2}a^{2}-1+5a
Combine \frac{33}{4}a^{2} e \frac{9}{4}a^{2} para obter \frac{21}{2}a^{2}.
\frac{1}{2}-5a+\frac{21}{2}a^{2}+5a
Subtraia 1 de \frac{3}{2} para obter \frac{1}{2}.
\frac{1}{2}+\frac{21}{2}a^{2}
Combine -5a e 5a para obter 0.
1-a+\frac{1}{4}a^{2}+8\left(a-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Utilize o teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(1-\frac{1}{2}a\right)^{2}.
1-a+\frac{1}{4}a^{2}+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Utilize o teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(a-\frac{1}{4}\right)^{2}.
1-a+\frac{1}{4}a^{2}+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Utilize a propriedade distributiva para multiplicar 8 por a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-a+\frac{33}{4}a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Combine \frac{1}{4}a^{2} e 8a^{2} para obter \frac{33}{4}a^{2}.
1-5a+\frac{33}{4}a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Combine -a e -4a para obter -5a.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Some 1 e \frac{1}{2} para obter \frac{3}{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Considere \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calcule o quadrado de 1.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Expanda \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-5a+\frac{33}{4}a^{2}+\frac{9}{4}a^{2}-1+5a
Calcule \frac{3}{2} elevado a 2 e obtenha \frac{9}{4}.
\frac{3}{2}-5a+\frac{21}{2}a^{2}-1+5a
Combine \frac{33}{4}a^{2} e \frac{9}{4}a^{2} para obter \frac{21}{2}a^{2}.
\frac{1}{2}-5a+\frac{21}{2}a^{2}+5a
Subtraia 1 de \frac{3}{2} para obter \frac{1}{2}.
\frac{1}{2}+\frac{21}{2}a^{2}
Combine -5a e 5a para obter 0.