Avaliar
\frac{223}{60}\approx 3,716666667
Fatorizar
\frac{223}{2 ^ {2} \cdot 3 \cdot 5} = 3\frac{43}{60} = 3,716666666666667
Compartilhar
Copiado para a área de transferência
\frac{10}{15}+\frac{12}{15}+\frac{6}{2}\times \frac{3}{4}
O mínimo múltiplo comum de 3 e 5 é 15. Converta \frac{2}{3} e \frac{4}{5} em frações com o denominador 15.
\frac{10+12}{15}+\frac{6}{2}\times \frac{3}{4}
Uma vez que \frac{10}{15} e \frac{12}{15} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{22}{15}+\frac{6}{2}\times \frac{3}{4}
Some 10 e 12 para obter 22.
\frac{22}{15}+3\times \frac{3}{4}
Dividir 6 por 2 para obter 3.
\frac{22}{15}+\frac{3\times 3}{4}
Expresse 3\times \frac{3}{4} como uma fração única.
\frac{22}{15}+\frac{9}{4}
Multiplique 3 e 3 para obter 9.
\frac{88}{60}+\frac{135}{60}
O mínimo múltiplo comum de 15 e 4 é 60. Converta \frac{22}{15} e \frac{9}{4} em frações com o denominador 60.
\frac{88+135}{60}
Uma vez que \frac{88}{60} e \frac{135}{60} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{223}{60}
Some 88 e 135 para obter 223.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}