Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=-1 ab=1\left(-132\right)=-132
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx-132. Para encontrar a e b, criar um sistema a ser resolvido.
1,-132 2,-66 3,-44 4,-33 6,-22 11,-12
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez a+b negativo, o número negativo tem um valor absoluto maior do que o positivo. Apresente todos os pares de números inteiros que devolvem o produto -132.
1-132=-131 2-66=-64 3-44=-41 4-33=-29 6-22=-16 11-12=-1
Calcule a soma de cada par.
a=-12 b=11
A solução é o par que devolve a soma -1.
\left(x^{2}-12x\right)+\left(11x-132\right)
Reescreva x^{2}-x-132 como \left(x^{2}-12x\right)+\left(11x-132\right).
x\left(x-12\right)+11\left(x-12\right)
Fator out x no primeiro e 11 no segundo grupo.
\left(x-12\right)\left(x+11\right)
Decomponha o termo comum x-12 ao utilizar a propriedade distributiva.
x^{2}-x-132=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-132\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-1\right)±\sqrt{1+528}}{2}
Multiplique -4 vezes -132.
x=\frac{-\left(-1\right)±\sqrt{529}}{2}
Some 1 com 528.
x=\frac{-\left(-1\right)±23}{2}
Calcule a raiz quadrada de 529.
x=\frac{1±23}{2}
O oposto de -1 é 1.
x=\frac{24}{2}
Agora, resolva a equação x=\frac{1±23}{2} quando ± for uma adição. Some 1 com 23.
x=12
Divida 24 por 2.
x=-\frac{22}{2}
Agora, resolva a equação x=\frac{1±23}{2} quando ± for uma subtração. Subtraia 23 de 1.
x=-11
Divida -22 por 2.
x^{2}-x-132=\left(x-12\right)\left(x-\left(-11\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua 12 por x_{1} e -11 por x_{2}.
x^{2}-x-132=\left(x-12\right)\left(x+11\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.