Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=-6 ab=1\left(-27\right)=-27
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx-27. Para encontrar a e b, criar um sistema a ser resolvido.
1,-27 3,-9
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez a+b negativo, o número negativo tem um valor absoluto maior do que o positivo. Apresente todos os pares de números inteiros que devolvem o produto -27.
1-27=-26 3-9=-6
Calcule a soma de cada par.
a=-9 b=3
A solução é o par que devolve a soma -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Reescreva x^{2}-6x-27 como \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
Fator out x no primeiro e 3 no segundo grupo.
\left(x-9\right)\left(x+3\right)
Decomponha o termo comum x-9 ao utilizar a propriedade distributiva.
x^{2}-6x-27=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Calcule o quadrado de -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Multiplique -4 vezes -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Some 36 com 108.
x=\frac{-\left(-6\right)±12}{2}
Calcule a raiz quadrada de 144.
x=\frac{6±12}{2}
O oposto de -6 é 6.
x=\frac{18}{2}
Agora, resolva a equação x=\frac{6±12}{2} quando ± for uma adição. Some 6 com 12.
x=9
Divida 18 por 2.
x=-\frac{6}{2}
Agora, resolva a equação x=\frac{6±12}{2} quando ± for uma subtração. Subtraia 12 de 6.
x=-3
Divida -6 por 2.
x^{2}-6x-27=\left(x-9\right)\left(x-\left(-3\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua 9 por x_{1} e -3 por x_{2}.
x^{2}-6x-27=\left(x-9\right)\left(x+3\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.