Pular para o conteúdo principal
Fatorizar
Tick mark Image
Avaliar
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

a+b=-2 ab=1\left(-3\right)=-3
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como x^{2}+ax+bx-3. Para localizar a e b, configure um sistema para ser resolvido.
a=-3 b=1
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é negativo, o número negativo tem um valor absoluto maior do que o positivo. O único par é a solução do sistema.
\left(x^{2}-3x\right)+\left(x-3\right)
Reescreva x^{2}-2x-3 como \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Decomponha x em x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Decomponha o termo comum x-3 ao utilizar a propriedade distributiva.
x^{2}-2x-3=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Calcule o quadrado de -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Multiplique -4 vezes -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Some 4 com 12.
x=\frac{-\left(-2\right)±4}{2}
Calcule a raiz quadrada de 16.
x=\frac{2±4}{2}
O oposto de -2 é 2.
x=\frac{6}{2}
Agora, resolva a equação x=\frac{2±4}{2} quando ± for uma adição. Some 2 com 4.
x=3
Divida 6 por 2.
x=-\frac{2}{2}
Agora, resolva a equação x=\frac{2±4}{2} quando ± for uma subtração. Subtraia 4 de 2.
x=-1
Divida -2 por 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua 3 por x_{1} e -1 por x_{2}.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.