Resolva para x
x=-1
x=11
Gráfico
Compartilhar
Copiado para a área de transferência
a+b=-10 ab=-11
Para resolver a equação, o fator x^{2}-10x-11 utilizando a fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para encontrar a e b, criar um sistema a ser resolvido.
a=-11 b=1
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez a+b negativo, o número negativo tem um valor absoluto maior do que o positivo. O único par é a solução do sistema.
\left(x-11\right)\left(x+1\right)
Reescreva a expressão \left(x+a\right)\left(x+b\right) fatorizada ao utilizar os valores obtidos.
x=11 x=-1
Para encontrar soluções de equação, resolva x-11=0 e x+1=0.
a+b=-10 ab=1\left(-11\right)=-11
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como x^{2}+ax+bx-11. Para encontrar a e b, criar um sistema a ser resolvido.
a=-11 b=1
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez a+b negativo, o número negativo tem um valor absoluto maior do que o positivo. O único par é a solução do sistema.
\left(x^{2}-11x\right)+\left(x-11\right)
Reescreva x^{2}-10x-11 como \left(x^{2}-11x\right)+\left(x-11\right).
x\left(x-11\right)+x-11
Decomponha x em x^{2}-11x.
\left(x-11\right)\left(x+1\right)
Decomponha o termo comum x-11 ao utilizar a propriedade distributiva.
x=11 x=-1
Para encontrar soluções de equação, resolva x-11=0 e x+1=0.
x^{2}-10x-11=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-11\right)}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, -10 por b e -11 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-11\right)}}{2}
Calcule o quadrado de -10.
x=\frac{-\left(-10\right)±\sqrt{100+44}}{2}
Multiplique -4 vezes -11.
x=\frac{-\left(-10\right)±\sqrt{144}}{2}
Some 100 com 44.
x=\frac{-\left(-10\right)±12}{2}
Calcule a raiz quadrada de 144.
x=\frac{10±12}{2}
O oposto de -10 é 10.
x=\frac{22}{2}
Agora, resolva a equação x=\frac{10±12}{2} quando ± for uma adição. Some 10 com 12.
x=11
Divida 22 por 2.
x=-\frac{2}{2}
Agora, resolva a equação x=\frac{10±12}{2} quando ± for uma subtração. Subtraia 12 de 10.
x=-1
Divida -2 por 2.
x=11 x=-1
A equação está resolvida.
x^{2}-10x-11=0
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
x^{2}-10x-11-\left(-11\right)=-\left(-11\right)
Some 11 a ambos os lados da equação.
x^{2}-10x=-\left(-11\right)
Subtrair -11 do próprio valor devolve o resultado 0.
x^{2}-10x=11
Subtraia -11 de 0.
x^{2}-10x+\left(-5\right)^{2}=11+\left(-5\right)^{2}
Divida -10, o coeficiente do termo x, 2 para obter -5. Em seguida, adicione o quadrado de -5 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}-10x+25=11+25
Calcule o quadrado de -5.
x^{2}-10x+25=36
Some 11 com 25.
\left(x-5\right)^{2}=36
Fatorize x^{2}-10x+25. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{36}
Calcule a raiz quadrada de ambos os lados da equação.
x-5=6 x-5=-6
Simplifique.
x=11 x=-1
Some 5 a ambos os lados da equação.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}