Resolva para x
x=-7
Gráfico
Compartilhar
Copiado para a área de transferência
a+b=14 ab=49
Para resolver a equação, o fator x^{2}+14x+49 utilizando a fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para encontrar a e b, criar um sistema a ser resolvido.
1,49 7,7
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é positivo, a e b são ambos positivos. Apresente todos os pares de números inteiros que devolvem o produto 49.
1+49=50 7+7=14
Calcule a soma de cada par.
a=7 b=7
A solução é o par que devolve a soma 14.
\left(x+7\right)\left(x+7\right)
Reescreva a expressão \left(x+a\right)\left(x+b\right) fatorizada ao utilizar os valores obtidos.
\left(x+7\right)^{2}
Reescreva como um quadrado binomial.
x=-7
Para localizar a solução da equação, resolva x+7=0.
a+b=14 ab=1\times 49=49
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como x^{2}+ax+bx+49. Para encontrar a e b, criar um sistema a ser resolvido.
1,49 7,7
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é positivo, a e b são ambos positivos. Apresente todos os pares de números inteiros que devolvem o produto 49.
1+49=50 7+7=14
Calcule a soma de cada par.
a=7 b=7
A solução é o par que devolve a soma 14.
\left(x^{2}+7x\right)+\left(7x+49\right)
Reescreva x^{2}+14x+49 como \left(x^{2}+7x\right)+\left(7x+49\right).
x\left(x+7\right)+7\left(x+7\right)
Fator out x no primeiro e 7 no segundo grupo.
\left(x+7\right)\left(x+7\right)
Decomponha o termo comum x+7 ao utilizar a propriedade distributiva.
\left(x+7\right)^{2}
Reescreva como um quadrado binomial.
x=-7
Para localizar a solução da equação, resolva x+7=0.
x^{2}+14x+49=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-14±\sqrt{14^{2}-4\times 49}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 14 por b e 49 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 49}}{2}
Calcule o quadrado de 14.
x=\frac{-14±\sqrt{196-196}}{2}
Multiplique -4 vezes 49.
x=\frac{-14±\sqrt{0}}{2}
Some 196 com -196.
x=-\frac{14}{2}
Calcule a raiz quadrada de 0.
x=-7
Divida -14 por 2.
\left(x+7\right)^{2}=0
Fatorize x^{2}+14x+49. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{0}
Calcule a raiz quadrada de ambos os lados da equação.
x+7=0 x+7=0
Simplifique.
x=-7 x=-7
Subtraia 7 de ambos os lados da equação.
x=-7
A equação está resolvida. As soluções são iguais.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}