Pular para o conteúdo principal
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\left(x^{2}-6x+9\right)\left(10-17x\right)^{2}=0
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-3\right)^{2}.
\left(x^{2}-6x+9\right)\left(100-340x+289x^{2}\right)=0
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(10-17x\right)^{2}.
4741x^{2}-2074x^{3}+289x^{4}-3660x+900=0
Utilize a propriedade distributiva para multiplicar x^{2}-6x+9 por 100-340x+289x^{2} e combinar termos semelhantes.
289x^{4}-2074x^{3}+4741x^{2}-3660x+900=0
Reorganize a equação para a colocar no formato padrão. Coloque os termos pela ordem da potência mais elevada para a mais baixa.
±\frac{900}{289},±\frac{900}{17},±900,±\frac{450}{289},±\frac{450}{17},±450,±\frac{300}{289},±\frac{300}{17},±300,±\frac{225}{289},±\frac{225}{17},±225,±\frac{180}{289},±\frac{180}{17},±180,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{90}{289},±\frac{90}{17},±90,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{45}{289},±\frac{45}{17},±45,±\frac{36}{289},±\frac{36}{17},±36,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{18}{289},±\frac{18}{17},±18,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{9}{289},±\frac{9}{17},±9,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
De acordo com o Teorema das Raízes Racionais, todas as raízes racionais de um polinómio estão no formato \frac{p}{q}, em que p divide o termo constante 900 e q divide o coeficiente inicial 289. Indique todos os candidatos \frac{p}{q}.
x=3
Encontre uma dessas raízes ao experimentar todos os valores inteiros. Comece pelo menor por valor absoluto. Se não encontrar nenhuma raiz de número inteiro, experimente frações.
289x^{3}-1207x^{2}+1120x-300=0
Por teorema do fator, x-k é um fator do polinomial para cada raiz k. Dividir 289x^{4}-2074x^{3}+4741x^{2}-3660x+900 por x-3 para obter 289x^{3}-1207x^{2}+1120x-300. Resolva a equação onde o resultado é igual a 0.
±\frac{300}{289},±\frac{300}{17},±300,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
De acordo com o Teorema das Raízes Racionais, todas as raízes racionais de um polinómio estão no formato \frac{p}{q}, em que p divide o termo constante -300 e q divide o coeficiente inicial 289. Indique todos os candidatos \frac{p}{q}.
x=3
Encontre uma dessas raízes ao experimentar todos os valores inteiros. Comece pelo menor por valor absoluto. Se não encontrar nenhuma raiz de número inteiro, experimente frações.
289x^{2}-340x+100=0
Por teorema do fator, x-k é um fator do polinomial para cada raiz k. Dividir 289x^{3}-1207x^{2}+1120x-300 por x-3 para obter 289x^{2}-340x+100. Resolva a equação onde o resultado é igual a 0.
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 289\times 100}}{2\times 289}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitua 289 por a, -340 por b e 100 por c na fórmula quadrática.
x=\frac{340±0}{578}
Efetue os cálculos.
x=\frac{10}{17}
As soluções são iguais.
x=3 x=\frac{10}{17}
Apresente todas as soluções encontradas.