Avaliar
\sqrt{3}-\sqrt{7}\approx -0,913700503
Compartilhar
Copiado para a área de transferência
\sqrt{3}-2\sqrt{7}+21\sqrt{\frac{1}{63}}
Fatorize a expressão 28=2^{2}\times 7. Reescreva a raiz quadrada do produto \sqrt{2^{2}\times 7} à medida que o produto das raízes quadradas \sqrt{2^{2}}\sqrt{7}. Calcule a raiz quadrada de 2^{2}.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{1}}{\sqrt{63}}
Reescreva a raiz quadrada da divisão \sqrt{\frac{1}{63}} à medida que a divisão de raízes quadradas \frac{\sqrt{1}}{\sqrt{63}}.
\sqrt{3}-2\sqrt{7}+21\times \frac{1}{\sqrt{63}}
Calcule a raiz quadrada de 1 e obtenha 1.
\sqrt{3}-2\sqrt{7}+21\times \frac{1}{3\sqrt{7}}
Fatorize a expressão 63=3^{2}\times 7. Reescreva a raiz quadrada do produto \sqrt{3^{2}\times 7} à medida que o produto das raízes quadradas \sqrt{3^{2}}\sqrt{7}. Calcule a raiz quadrada de 3^{2}.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{7}}{3\left(\sqrt{7}\right)^{2}}
Racionalize o denominador de \frac{1}{3\sqrt{7}} ao multiplicar o numerador e o denominador por \sqrt{7}.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{7}}{3\times 7}
O quadrado de \sqrt{7} é 7.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{7}}{21}
Multiplique 3 e 7 para obter 21.
\sqrt{3}-2\sqrt{7}+\sqrt{7}
Anule 21 e 21.
\sqrt{3}-\sqrt{7}
Combine -2\sqrt{7} e \sqrt{7} para obter -\sqrt{7}.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}