Avaliar
3\sqrt{2}\approx 4,242640687
Compartilhar
Copiado para a área de transferência
\frac{\sqrt{9}}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Reescreva a raiz quadrada da divisão \sqrt{\frac{9}{2}} à medida que a divisão de raízes quadradas \frac{\sqrt{9}}{\sqrt{2}}.
\frac{3}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Calcule a raiz quadrada de 9 e obtenha 3.
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Racionalize o denominador de \frac{3}{\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
\frac{3\sqrt{2}}{2}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
O quadrado de \sqrt{2} é 2.
\frac{3\sqrt{2}}{2}+\frac{\sqrt{25}}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Reescreva a raiz quadrada da divisão \sqrt{\frac{25}{8}} à medida que a divisão de raízes quadradas \frac{\sqrt{25}}{\sqrt{8}}.
\frac{3\sqrt{2}}{2}+\frac{5}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Calcule a raiz quadrada de 25 e obtenha 5.
\frac{3\sqrt{2}}{2}+\frac{5}{2\sqrt{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Fatorize a expressão 8=2^{2}\times 2. Reescreva a raiz quadrada do produto \sqrt{2^{2}\times 2} à medida que o produto das raízes quadradas \sqrt{2^{2}}\sqrt{2}. Calcule a raiz quadrada de 2^{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Racionalize o denominador de \frac{5}{2\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\times 2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
O quadrado de \sqrt{2} é 2.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{4}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Multiplique 2 e 2 para obter 4.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Combine \frac{3\sqrt{2}}{2} e \frac{5\sqrt{2}}{4} para obter \frac{11}{4}\sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{1}}{\sqrt{8}}
Reescreva a raiz quadrada da divisão \sqrt{\frac{1}{8}} à medida que a divisão de raízes quadradas \frac{\sqrt{1}}{\sqrt{8}}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{\sqrt{8}}
Calcule a raiz quadrada de 1 e obtenha 1.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{2\sqrt{2}}
Fatorize a expressão 8=2^{2}\times 2. Reescreva a raiz quadrada do produto \sqrt{2^{2}\times 2} à medida que o produto das raízes quadradas \sqrt{2^{2}}\sqrt{2}. Calcule a raiz quadrada de 2^{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Racionalize o denominador de \frac{1}{2\sqrt{2}} ao multiplicar o numerador e o denominador por \sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\times 2}
O quadrado de \sqrt{2} é 2.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{4}
Multiplique 2 e 2 para obter 4.
3\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}
Combine \frac{11}{4}\sqrt{2} e \frac{\sqrt{2}}{4} para obter 3\sqrt{2}.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}