Pular para o conteúdo principal
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

x^{2}-8+2x=0
Adicionar 2x em ambos os lados.
x^{2}+2x-8=0
Reformule o polinómio para o colocar no formato padrão. Coloque os termos pela ordem da potência mais elevada para a mais baixa.
a+b=2 ab=-8
Para resolver a equação, o fator x^{2}+2x-8 utilizando a fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para encontrar a e b, criar um sistema a ser resolvido.
-1,8 -2,4
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -8.
-1+8=7 -2+4=2
Calcule a soma de cada par.
a=-2 b=4
A solução é o par que devolve a soma 2.
\left(x-2\right)\left(x+4\right)
Reescreva a expressão \left(x+a\right)\left(x+b\right) fatorizada ao utilizar os valores obtidos.
x=2 x=-4
Para encontrar soluções de equação, resolva x-2=0 e x+4=0.
x^{2}-8+2x=0
Adicionar 2x em ambos os lados.
x^{2}+2x-8=0
Reformule o polinómio para o colocar no formato padrão. Coloque os termos pela ordem da potência mais elevada para a mais baixa.
a+b=2 ab=1\left(-8\right)=-8
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como x^{2}+ax+bx-8. Para encontrar a e b, criar um sistema a ser resolvido.
-1,8 -2,4
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -8.
-1+8=7 -2+4=2
Calcule a soma de cada par.
a=-2 b=4
A solução é o par que devolve a soma 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
Reescreva x^{2}+2x-8 como \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
Fator out x no primeiro e 4 no segundo grupo.
\left(x-2\right)\left(x+4\right)
Decomponha o termo comum x-2 ao utilizar a propriedade distributiva.
x=2 x=-4
Para encontrar soluções de equação, resolva x-2=0 e x+4=0.
x^{2}-8+2x=0
Adicionar 2x em ambos os lados.
x^{2}+2x-8=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 2 por b e -8 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Calcule o quadrado de 2.
x=\frac{-2±\sqrt{4+32}}{2}
Multiplique -4 vezes -8.
x=\frac{-2±\sqrt{36}}{2}
Some 4 com 32.
x=\frac{-2±6}{2}
Calcule a raiz quadrada de 36.
x=\frac{4}{2}
Agora, resolva a equação x=\frac{-2±6}{2} quando ± for uma adição. Some -2 com 6.
x=2
Divida 4 por 2.
x=-\frac{8}{2}
Agora, resolva a equação x=\frac{-2±6}{2} quando ± for uma subtração. Subtraia 6 de -2.
x=-4
Divida -8 por 2.
x=2 x=-4
A equação está resolvida.
x^{2}-8+2x=0
Adicionar 2x em ambos os lados.
x^{2}+2x=8
Adicionar 8 em ambos os lados. Qualquer valor mais zero dá o valor inicial.
x^{2}+2x+1^{2}=8+1^{2}
Divida 2, o coeficiente do termo x, 2 para obter 1. Em seguida, adicione o quadrado de 1 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}+2x+1=8+1
Calcule o quadrado de 1.
x^{2}+2x+1=9
Some 8 com 1.
\left(x+1\right)^{2}=9
Fatorize x^{2}+2x+1. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Calcule a raiz quadrada de ambos os lados da equação.
x+1=3 x+1=-3
Simplifique.
x=2 x=-4
Subtraia 1 de ambos os lados da equação.