Pular para o conteúdo principal
Avaliar
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\int _{-2}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(4x-x^{3}\right)^{2}.
\int _{-2}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
Para multiplicar as potências da mesma base, some os seus expoentes. Some 1 e 3 para obter 4.
\int _{-2}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 3 e 2 para obter 6.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Avalie primeiro a integral indefinida.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Integrar o termo da soma pelo termo.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Considere a constante em cada um dos termos.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplique 16 vezes \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}. Multiplique -8 vezes \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{6}\mathrm{d}x por \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
Simplifique.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{\left(-2\right)^{7}}{7}-\frac{8}{5}\left(-2\right)^{5}+\frac{16}{3}\left(-2\right)^{3}\right)
O integral definido é a antiderivada da expressão avaliada no limite superior de integração menos a antiderivada avaliada no limite inferior da integração.
\frac{2048}{105}
Simplifique.