Pular para o conteúdo principal
Avaliar
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\int x^{3}-2x^{2}-13x\mathrm{d}x
Avalie primeiro a integral indefinida.
\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -13x\mathrm{d}x
Integrar o termo da soma pelo termo.
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
Considere a constante em cada um dos termos.
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-13\int x\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplique -2 vezes \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-\frac{13x^{2}}{2}
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplique -13 vezes \frac{x^{2}}{2}.
\frac{0^{4}}{4}-\frac{2}{3}\times 0^{3}-\frac{13}{2}\times 0^{2}-\left(\frac{\left(-1\right)^{4}}{4}-\frac{2}{3}\left(-1\right)^{3}-\frac{13}{2}\left(-1\right)^{2}\right)
O integral definido é a antiderivada da expressão avaliada no limite superior de integração menos a antiderivada avaliada no limite inferior da integração.
\frac{67}{12}
Simplifique.