Pular para o conteúdo principal
Avaliar
Tick mark Image
Calcular a diferenciação com respeito a x
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\int 27x^{3}+54x^{2}+36x+8\mathrm{d}x
Utilize o teorema binomial \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} para expandir \left(3x+2\right)^{3}.
\int 27x^{3}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 36x\mathrm{d}x+\int 8\mathrm{d}x
Integrar o termo da soma pelo termo.
27\int x^{3}\mathrm{d}x+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Considere a constante em cada um dos termos.
\frac{27x^{4}}{4}+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplique 27 vezes \frac{x^{4}}{4}.
\frac{27x^{4}}{4}+18x^{3}+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplique 54 vezes \frac{x^{3}}{3}.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+\int 8\mathrm{d}x
Desde \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, substitua \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplique 36 vezes \frac{x^{2}}{2}.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x
Encontre a integral de 8 usando a tabela de integrais comuns regra \int a\mathrm{d}x=ax.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x+С
Se F\left(x\right) é um antiderivado de f\left(x\right), então o conjunto de todos os antiderivados de f\left(x\right) é dado por F\left(x\right)+C. Por isso, adicione a constante de integração C\in \mathrm{R} ao resultado.