Resolva para x (complex solution)
x\in \mathrm{C}
Resolva para x
x\in \mathrm{R}
Gráfico
Compartilhar
Copiado para a área de transferência
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplique x+1 e x+1 para obter \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplique x-1 e x-1 para obter \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Multiplique x^{2}+1 e x^{2}+1 para obter \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize a propriedade distributiva para multiplicar \frac{1}{4} por x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize a propriedade distributiva para multiplicar \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} por x^{2}-2x+1 e combinar termos semelhantes.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Combine -\frac{1}{2}x^{2} e x^{2} para obter \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 2 e 2 para obter 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Utilize a propriedade distributiva para multiplicar \frac{1}{4} por x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Subtraia \frac{1}{4}x^{4} de ambos os lados.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Combine \frac{1}{4}x^{4} e -\frac{1}{4}x^{4} para obter 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Subtraia \frac{1}{2}x^{2} de ambos os lados.
\frac{1}{4}=\frac{1}{4}
Combine \frac{1}{2}x^{2} e -\frac{1}{2}x^{2} para obter 0.
\text{true}
Compare \frac{1}{4} e \frac{1}{4}.
x\in \mathrm{C}
Isto é verdadeiro para qualquer valor x.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplique x+1 e x+1 para obter \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplique x-1 e x-1 para obter \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Multiplique x^{2}+1 e x^{2}+1 para obter \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize a propriedade distributiva para multiplicar \frac{1}{4} por x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilize a propriedade distributiva para multiplicar \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} por x^{2}-2x+1 e combinar termos semelhantes.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Combine -\frac{1}{2}x^{2} e x^{2} para obter \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 2 e 2 para obter 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Utilize a propriedade distributiva para multiplicar \frac{1}{4} por x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Subtraia \frac{1}{4}x^{4} de ambos os lados.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Combine \frac{1}{4}x^{4} e -\frac{1}{4}x^{4} para obter 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Subtraia \frac{1}{2}x^{2} de ambos os lados.
\frac{1}{4}=\frac{1}{4}
Combine \frac{1}{2}x^{2} e -\frac{1}{2}x^{2} para obter 0.
\text{true}
Compare \frac{1}{4} e \frac{1}{4}.
x\in \mathrm{R}
Isto é verdadeiro para qualquer valor x.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}