\frac{ 1 }{ 2 } { \left(3+ { \left(2 \sqrt{ 3 } -2 \right) }^{ 2 } + { \left( \sqrt{ 3 } -2 \right) }^{ 2 } \right) }^{ }
Avaliar
13-6\sqrt{3}\approx 2,607695155
Expandir
13-6\sqrt{3}
Compartilhar
Copiado para a área de transferência
\frac{1}{2}\left(3+4\left(\sqrt{3}\right)^{2}-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(2\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(3+4\times 3-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
O quadrado de \sqrt{3} é 3.
\frac{1}{2}\left(3+12-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Multiplique 4 e 3 para obter 12.
\frac{1}{2}\left(3+16-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Some 12 e 4 para obter 16.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Some 3 e 16 para obter 19.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4\right)^{1}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(19-8\sqrt{3}+3-4\sqrt{3}+4\right)^{1}
O quadrado de \sqrt{3} é 3.
\frac{1}{2}\left(19-8\sqrt{3}+7-4\sqrt{3}\right)^{1}
Some 3 e 4 para obter 7.
\frac{1}{2}\left(26-8\sqrt{3}-4\sqrt{3}\right)^{1}
Some 19 e 7 para obter 26.
\frac{1}{2}\left(26-12\sqrt{3}\right)^{1}
Combine -8\sqrt{3} e -4\sqrt{3} para obter -12\sqrt{3}.
\frac{1}{2}\left(26-12\sqrt{3}\right)
Calcule 26-12\sqrt{3} elevado a 1 e obtenha 26-12\sqrt{3}.
13-6\sqrt{3}
Utilize a propriedade distributiva para multiplicar \frac{1}{2} por 26-12\sqrt{3}.
\frac{1}{2}\left(3+4\left(\sqrt{3}\right)^{2}-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(2\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(3+4\times 3-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
O quadrado de \sqrt{3} é 3.
\frac{1}{2}\left(3+12-8\sqrt{3}+4+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Multiplique 4 e 3 para obter 12.
\frac{1}{2}\left(3+16-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Some 12 e 4 para obter 16.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}-2\right)^{2}\right)^{1}
Some 3 e 16 para obter 19.
\frac{1}{2}\left(19-8\sqrt{3}+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4\right)^{1}
Utilize o teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(\sqrt{3}-2\right)^{2}.
\frac{1}{2}\left(19-8\sqrt{3}+3-4\sqrt{3}+4\right)^{1}
O quadrado de \sqrt{3} é 3.
\frac{1}{2}\left(19-8\sqrt{3}+7-4\sqrt{3}\right)^{1}
Some 3 e 4 para obter 7.
\frac{1}{2}\left(26-8\sqrt{3}-4\sqrt{3}\right)^{1}
Some 19 e 7 para obter 26.
\frac{1}{2}\left(26-12\sqrt{3}\right)^{1}
Combine -8\sqrt{3} e -4\sqrt{3} para obter -12\sqrt{3}.
\frac{1}{2}\left(26-12\sqrt{3}\right)
Calcule 26-12\sqrt{3} elevado a 1 e obtenha 26-12\sqrt{3}.
13-6\sqrt{3}
Utilize a propriedade distributiva para multiplicar \frac{1}{2} por 26-12\sqrt{3}.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}