Pular para o conteúdo principal
Avaliar
Tick mark Image
Fatorizar
Tick mark Image

Compartilhar

\frac{\frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Divida \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} por \frac{5}{6} ao multiplicar \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} pelo recíproco de \frac{5}{6}.
\frac{\frac{\left(-\frac{1}{6}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtraia \frac{2}{3} de \frac{1}{2} para obter -\frac{1}{6}.
\frac{\frac{\frac{1}{36}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Calcule -\frac{1}{6} elevado a 2 e obtenha \frac{1}{36}.
\frac{\frac{\frac{1}{6}}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiplique \frac{1}{36} e 6 para obter \frac{1}{6}.
\frac{\frac{\frac{1}{6}}{\frac{25}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiplique \frac{5}{6} e 5 para obter \frac{25}{6}.
\frac{\frac{1}{6}\times \frac{6}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Divida \frac{1}{6} por \frac{25}{6} ao multiplicar \frac{1}{6} pelo recíproco de \frac{25}{6}.
\frac{\frac{1}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiplique \frac{1}{6} e \frac{6}{25} para obter \frac{1}{25}.
\frac{\frac{1}{25}-\frac{1}{3}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Reescreva a raiz quadrada da divisão \frac{1}{9} à medida que a divisão de raízes quadradas \frac{\sqrt{1}}{\sqrt{9}}. Calcule a raiz quadrada do numerador e do denominador.
\frac{-\frac{22}{75}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtraia \frac{1}{3} de \frac{1}{25} para obter -\frac{22}{75}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Calcule \sqrt[3]{\frac{1}{8}} e obtenha \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtraia \frac{1}{2} de 1 para obter \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{1}{4}\times \frac{9}{8}}
Calcule \frac{1}{2} elevado a 2 e obtenha \frac{1}{4}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{9}{32}}
Multiplique \frac{1}{4} e \frac{9}{8} para obter \frac{9}{32}.
\frac{-\frac{22}{75}}{\frac{25}{32}}
Some \frac{1}{2} e \frac{9}{32} para obter \frac{25}{32}.
-\frac{22}{75}\times \frac{32}{25}
Divida -\frac{22}{75} por \frac{25}{32} ao multiplicar -\frac{22}{75} pelo recíproco de \frac{25}{32}.
-\frac{704}{1875}
Multiplique -\frac{22}{75} e \frac{32}{25} para obter -\frac{704}{1875}.