Avaliar
\frac{1}{15a^{2}}
Calcular a diferenciação com respeito a a
-\frac{2}{15a^{3}}
Gráfico
Compartilhar
Copiado para a área de transferência
\frac{x\times 4}{20\times 3a^{2}x}
Multiplique \frac{x}{20} vezes \frac{4}{3a^{2}x} ao multiplicar o numerador vezes o numerador e o denominador vezes o denominador.
\frac{1}{3\times 5a^{2}}
Anule 4x no numerador e no denominador.
\frac{1}{15a^{2}}
Multiplique 3 e 5 para obter 15.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{x\times 4}{20\times 3a^{2}x})
Multiplique \frac{x}{20} vezes \frac{4}{3a^{2}x} ao multiplicar o numerador vezes o numerador e o denominador vezes o denominador.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{3\times 5a^{2}})
Anule 4x no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{15a^{2}})
Multiplique 3 e 5 para obter 15.
-\left(15a^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(15a^{2})
Se F é a composição de duas funções diferenciáveis f\left(u\right) e u=g\left(x\right), ou seja, se F\left(x\right)=f\left(g\left(x\right)\right), então a derivada de F é a derivada de f em relação a u vezes a derivada de g em relação a x, ou seja, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(15a^{2}\right)^{-2}\times 2\times 15a^{2-1}
A derivada de um polinómio é a soma das derivadas dos seus termos. A derivada de qualquer termo constante é 0. A derivada de ax^{n} é nax^{n-1}.
-30a^{1}\times \left(15a^{2}\right)^{-2}
Simplifique.
-30a\times \left(15a^{2}\right)^{-2}
Para qualquer termo t, t^{1}=t.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}