Resolva para x
x=3
Gráfico
Compartilhar
Copiado para a área de transferência
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
A variável x não pode ser igual a nenhum dos valores -9,0, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por x\left(x+9\right), o mínimo múltiplo comum de x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Multiplique x+9 e x+9 para obter \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Multiplique x e x para obter x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Combine x^{2} e x^{2}\times 16 para obter 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Utilize a propriedade distributiva para multiplicar 8x por x+9.
17x^{2}+18x+81-8x^{2}=72x
Subtraia 8x^{2} de ambos os lados.
9x^{2}+18x+81=72x
Combine 17x^{2} e -8x^{2} para obter 9x^{2}.
9x^{2}+18x+81-72x=0
Subtraia 72x de ambos os lados.
9x^{2}-54x+81=0
Combine 18x e -72x para obter -54x.
x^{2}-6x+9=0
Divida ambos os lados por 9.
a+b=-6 ab=1\times 9=9
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como x^{2}+ax+bx+9. Para encontrar a e b, criar um sistema a ser resolvido.
-1,-9 -3,-3
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é negativo, a e b são ambos negativos. Apresente todos os pares de números inteiros que devolvem o produto 9.
-1-9=-10 -3-3=-6
Calcule a soma de cada par.
a=-3 b=-3
A solução é o par que devolve a soma -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Reescreva x^{2}-6x+9 como \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Fator out x no primeiro e -3 no segundo grupo.
\left(x-3\right)\left(x-3\right)
Decomponha o termo comum x-3 ao utilizar a propriedade distributiva.
\left(x-3\right)^{2}
Reescreva como um quadrado binomial.
x=3
Para localizar a solução da equação, resolva x-3=0.
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
A variável x não pode ser igual a nenhum dos valores -9,0, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por x\left(x+9\right), o mínimo múltiplo comum de x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Multiplique x+9 e x+9 para obter \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Multiplique x e x para obter x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Combine x^{2} e x^{2}\times 16 para obter 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Utilize a propriedade distributiva para multiplicar 8x por x+9.
17x^{2}+18x+81-8x^{2}=72x
Subtraia 8x^{2} de ambos os lados.
9x^{2}+18x+81=72x
Combine 17x^{2} e -8x^{2} para obter 9x^{2}.
9x^{2}+18x+81-72x=0
Subtraia 72x de ambos os lados.
9x^{2}-54x+81=0
Combine 18x e -72x para obter -54x.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 9\times 81}}{2\times 9}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 9 por a, -54 por b e 81 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 9\times 81}}{2\times 9}
Calcule o quadrado de -54.
x=\frac{-\left(-54\right)±\sqrt{2916-36\times 81}}{2\times 9}
Multiplique -4 vezes 9.
x=\frac{-\left(-54\right)±\sqrt{2916-2916}}{2\times 9}
Multiplique -36 vezes 81.
x=\frac{-\left(-54\right)±\sqrt{0}}{2\times 9}
Some 2916 com -2916.
x=-\frac{-54}{2\times 9}
Calcule a raiz quadrada de 0.
x=\frac{54}{2\times 9}
O oposto de -54 é 54.
x=\frac{54}{18}
Multiplique 2 vezes 9.
x=3
Divida 54 por 18.
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
A variável x não pode ser igual a nenhum dos valores -9,0, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por x\left(x+9\right), o mínimo múltiplo comum de x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Multiplique x+9 e x+9 para obter \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Utilize o teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Multiplique x e x para obter x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Combine x^{2} e x^{2}\times 16 para obter 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Utilize a propriedade distributiva para multiplicar 8x por x+9.
17x^{2}+18x+81-8x^{2}=72x
Subtraia 8x^{2} de ambos os lados.
9x^{2}+18x+81=72x
Combine 17x^{2} e -8x^{2} para obter 9x^{2}.
9x^{2}+18x+81-72x=0
Subtraia 72x de ambos os lados.
9x^{2}-54x+81=0
Combine 18x e -72x para obter -54x.
9x^{2}-54x=-81
Subtraia 81 de ambos os lados. Um valor subtraído de zero dá a respetiva negação.
\frac{9x^{2}-54x}{9}=-\frac{81}{9}
Divida ambos os lados por 9.
x^{2}+\left(-\frac{54}{9}\right)x=-\frac{81}{9}
Dividir por 9 anula a multiplicação por 9.
x^{2}-6x=-\frac{81}{9}
Divida -54 por 9.
x^{2}-6x=-9
Divida -81 por 9.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divida -6, o coeficiente do termo x, 2 para obter -3. Em seguida, adicione o quadrado de -3 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}-6x+9=-9+9
Calcule o quadrado de -3.
x^{2}-6x+9=0
Some -9 com 9.
\left(x-3\right)^{2}=0
Fatorize x^{2}-6x+9. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Calcule a raiz quadrada de ambos os lados da equação.
x-3=0 x-3=0
Simplifique.
x=3 x=3
Some 3 a ambos os lados da equação.
x=3
A equação está resolvida. As soluções são iguais.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}