Avaliar
\frac{2}{x-3}
Expandir
\frac{2}{x-3}
Gráfico
Compartilhar
Copiado para a área de transferência
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Fatorize a expressão 4x-4. Fatorize a expressão x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de 4\left(x-1\right) e \left(x-3\right)\left(x-1\right) é 4\left(x-3\right)\left(x-1\right). Multiplique \frac{x+1}{4\left(x-1\right)} vezes \frac{x-3}{x-3}. Multiplique \frac{x+1}{\left(x-3\right)\left(x-1\right)} vezes \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Uma vez que \frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} e \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Efetue as multiplicações em \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Combine termos semelhantes em x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Fatorize a expressão 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de 4\left(x-3\right)\left(x-1\right) e 4\left(x-1\right) é 4\left(x-3\right)\left(x-1\right). Multiplique \frac{x-3}{4\left(x-1\right)} vezes \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Uma vez que \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} e \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Efetue as multiplicações em x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Combine termos semelhantes em x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Fatorize as expressões que ainda não foram fatorizadas em \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Anule 4\left(x-1\right) no numerador e no denominador.
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Fatorize a expressão 4x-4. Fatorize a expressão x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de 4\left(x-1\right) e \left(x-3\right)\left(x-1\right) é 4\left(x-3\right)\left(x-1\right). Multiplique \frac{x+1}{4\left(x-1\right)} vezes \frac{x-3}{x-3}. Multiplique \frac{x+1}{\left(x-3\right)\left(x-1\right)} vezes \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Uma vez que \frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} e \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Efetue as multiplicações em \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Combine termos semelhantes em x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Fatorize a expressão 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de 4\left(x-3\right)\left(x-1\right) e 4\left(x-1\right) é 4\left(x-3\right)\left(x-1\right). Multiplique \frac{x-3}{4\left(x-1\right)} vezes \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Uma vez que \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} e \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Efetue as multiplicações em x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Combine termos semelhantes em x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Fatorize as expressões que ainda não foram fatorizadas em \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Anule 4\left(x-1\right) no numerador e no denominador.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}