Avaliar
-\frac{24x^{2}+24x-19}{\left(4x-3\right)\left(2x+1\right)}
Expandir
\frac{19-24x-24x^{2}}{\left(4x-3\right)\left(2x+1\right)}
Gráfico
Compartilhar
Copiado para a área de transferência
\frac{4x-3}{2x+1}-\frac{10\left(2x-1\right)}{4x-3}
Expresse 10\times \frac{2x-1}{4x-3} como uma fração única.
\frac{4x-3}{2x+1}-\frac{20x-10}{4x-3}
Utilize a propriedade distributiva para multiplicar 10 por 2x-1.
\frac{\left(4x-3\right)\left(4x-3\right)}{\left(4x-3\right)\left(2x+1\right)}-\frac{\left(20x-10\right)\left(2x+1\right)}{\left(4x-3\right)\left(2x+1\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de 2x+1 e 4x-3 é \left(4x-3\right)\left(2x+1\right). Multiplique \frac{4x-3}{2x+1} vezes \frac{4x-3}{4x-3}. Multiplique \frac{20x-10}{4x-3} vezes \frac{2x+1}{2x+1}.
\frac{\left(4x-3\right)\left(4x-3\right)-\left(20x-10\right)\left(2x+1\right)}{\left(4x-3\right)\left(2x+1\right)}
Uma vez que \frac{\left(4x-3\right)\left(4x-3\right)}{\left(4x-3\right)\left(2x+1\right)} e \frac{\left(20x-10\right)\left(2x+1\right)}{\left(4x-3\right)\left(2x+1\right)} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{16x^{2}-12x-12x+9-40x^{2}-20x+20x+10}{\left(4x-3\right)\left(2x+1\right)}
Efetue as multiplicações em \left(4x-3\right)\left(4x-3\right)-\left(20x-10\right)\left(2x+1\right).
\frac{-24x^{2}-24x+19}{\left(4x-3\right)\left(2x+1\right)}
Combine termos semelhantes em 16x^{2}-12x-12x+9-40x^{2}-20x+20x+10.
\frac{-24x^{2}-24x+19}{8x^{2}-2x-3}
Expanda \left(4x-3\right)\left(2x+1\right).
\frac{4x-3}{2x+1}-\frac{10\left(2x-1\right)}{4x-3}
Expresse 10\times \frac{2x-1}{4x-3} como uma fração única.
\frac{4x-3}{2x+1}-\frac{20x-10}{4x-3}
Utilize a propriedade distributiva para multiplicar 10 por 2x-1.
\frac{\left(4x-3\right)\left(4x-3\right)}{\left(4x-3\right)\left(2x+1\right)}-\frac{\left(20x-10\right)\left(2x+1\right)}{\left(4x-3\right)\left(2x+1\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de 2x+1 e 4x-3 é \left(4x-3\right)\left(2x+1\right). Multiplique \frac{4x-3}{2x+1} vezes \frac{4x-3}{4x-3}. Multiplique \frac{20x-10}{4x-3} vezes \frac{2x+1}{2x+1}.
\frac{\left(4x-3\right)\left(4x-3\right)-\left(20x-10\right)\left(2x+1\right)}{\left(4x-3\right)\left(2x+1\right)}
Uma vez que \frac{\left(4x-3\right)\left(4x-3\right)}{\left(4x-3\right)\left(2x+1\right)} e \frac{\left(20x-10\right)\left(2x+1\right)}{\left(4x-3\right)\left(2x+1\right)} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{16x^{2}-12x-12x+9-40x^{2}-20x+20x+10}{\left(4x-3\right)\left(2x+1\right)}
Efetue as multiplicações em \left(4x-3\right)\left(4x-3\right)-\left(20x-10\right)\left(2x+1\right).
\frac{-24x^{2}-24x+19}{\left(4x-3\right)\left(2x+1\right)}
Combine termos semelhantes em 16x^{2}-12x-12x+9-40x^{2}-20x+20x+10.
\frac{-24x^{2}-24x+19}{8x^{2}-2x-3}
Expanda \left(4x-3\right)\left(2x+1\right).
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}